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Hence, and from (5.4), we finally obtain
HD) =00 — 8 o [ 17 Dub (@) + V(@ (@) ]

A graph of the continucus part of the function ¢(z) — ¢* is shown in Pig.3. The pres-~
ence of a-singular component and a singularity at z=3 in the correlation function of the
random f£ield onn{f) on the line of defects is due to the replacement of the real cracks by
point defects. For a random field of. inhomogeneities of finite size the correlation function
should be smooth, bounded, and have minimal correlation radius of the order of the mean size
of the defect. As a random field of defects approaches a regular lattice, the correlation
radius of the stress field grows, as is also seen from Fig.3 (the physically meaningiess
domain =z« % is not shown in Fig.3).
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NON-AXISYMMETRIC BUCKLING AND POST-CRITICAL BEHAVIOUR OF
ELASTIC SPHERICAL SHELLS IN THE CASE OF A DOUBLE CRITICAL VALUE OF THE LOAD™

I..8. SRUBSHCHIK

The influence of small geometric imperfections of the shape of the middle
surface on the non-~axisymmetric buckling and initial post-critical behaviour
of shallow elastic spherical shells is investigated for a uniform external
pressure.

Cases are considered when the least bifurcation load of non-axisymmetric buckling p, of
the corresponding ideal shell /1/ is a double eigenvalue of the linearized problem, i.e.,
buckling in two eigen modes occurs. Surfaces of values of the upper critical load as a
function of imperfection functionals are constructed by using matrix pivotal condensation /1
~7/ and alignment /8—10/ methods for shells with a closed framed edge for A =696 and 9,
with a free clamped edge for 4 =8.045, and with a fixed hinge-~supported edge for A = 5655
and A — o0, where the parameter is A = 2[3(1 — )" (#/m*, and H is the height of the shell
rise, h is its thickness, and v is Poisson's ratio.

Prikl.Matem.Mekhan.,Vol.47,No.4,pp.662~672,1983
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Formulas for the theory of the initial post-critical behaviour of spherical shells with
elastic clamping of the edge in a fixed wall have been obtained by the perturbation method /7/,
and in an asymptotic analysis as A - o by the perturbation method in cogbination with the
boundary-layer method. Methodologically this case is interesting because of the presence of
non-linearity in the boundary conditions.

The influence of initial imperfections on the non-axisymmetric buckling of spherical shells
under linear boundary conditiong was investigated in /2,3/, when p, is an isolated eigenvalue,
and in /4~6/ for A>17, when p,is a double eigenvalue. An asymptotic analysis as A - o
in the case of a closed framed edge is given in /3,11/.

1. Formulation of the problem. The system of non-linear eguilibrium differential
equations of shallow elastic spherical shells with small initial imperfections in the middle
surface shape /12/ under uniform external pressure can be represented in the form

£V — VIF — [w, F] + E[L, Fl=4p (1.1)
&a?VAF + Vhw + [, w] —E[L, w] =0
B=A", Vi () 4 () + 50"
V=TIV, [, Fl=u (P + S F) +
F"(—é—-w’+-;§— w") -2 (—Lw" —-—é—w‘){-}-i"‘ --é,—i")

V=20 =50 0<r<t, 0<0<2a

we will consider these equations together with each of the boundary conditions on the
contour r==1{
i) w=rlw=F=F'=O; 2) w=1‘1w=I‘gFm0, (1.2)

8o’ ToF + (w’ -8 + —%; w’“) =0, Tw=p W +w +

keo ') -+ pow’, ToF = F" — vF' — vF"
TeF =F" 4+ Q4+ VF" 4+ (v—1)F —3F, 0<v< 05, =0

Here p; =0, pg =1 or py=1,p, =0,k is the coefficient of elastic clamping of the edge
in a fixed wall, E[{r,8) is the initial deflection, { is a scalar parameter, and [l 1.
The dimensionless quantities in (1.1) and (1.2} are related to the dimensional quantities by
the formulas given in /6,13/.

Problems (1.1) and (1.2) for any P and@ § =0 have axisymmetric solutions z* {r, p) = (w*
(ry p), F*(r, p)), which are determined from the appropriate boundary conditions

e*dou = uv + rv + 2pr (1.3}
e Ay == — -—;—'—-u’—m
Ao = r (1 (ru))', | ur™, or? Jpg < o0
w1, p) =0, u(r, p) =w", v(r, p) = F¥
D op (' +vu+keeuw) v pu=0=0, r=1
2) py (U A ve ke ) o pest = v vy = 0, ro=

It is shown in /1,10/ that critical loads p = p, exist for which non-axisymmetric modes
can exist together with z*. These loads are defined as eigenvalues of the boundary value
problems

¥ 13
lg)xnaeoglmawu"‘wn_Tucfn"“'&:‘(fn”";’jﬂ)" (L.4)
3 2
-—;-(u’ng b ';‘Wn) - i?;w“'=a

0 % Ty n
P2, a5 — 802L, %y — Low, — —;‘- w,” - i (w,,‘ — -——-wﬁ) =10,

r r
&gy === (Wy, fn)
L=+ () =22 () fa=0(", w,=0("
“o"’“(",l’o), ”o*”(rvpo); n:’.ia 2':'--
1) wn"‘:rswa""’fﬂzfn':osr:i
2) wy =Tyw, = Ry (n, f) = R (n, z) = 0, 7 =1
Ry(n, ) =" — ~f +vn¥f R(n, 2) = e [fu” — 2 + v) oy’ +
Sntfy + (v - AT+ B (1 + uo) wy
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Problems (l.4) are obtained by linearizing (1.1) and (1.2) with respect to z* {r),

where
the sigenvector-functions are found in the form Z, {r) cos nb, where n is an integer. Note that

the values of p, are calculated in /1,10,13,14/ for different A and n.
2. Application of the perturbation method. The influence of small i

will be investigated by the perturbation method /7/. Setting w=uw* + o, F = F* +

A, for the small perturbations A, z = (0, %) we obtain boundary value problems from (l 1) and
(1.2) which we write in vector form

é
o
+ @

Moz=({o, ¥] + 3,3 (i, ¥ +{F*, o) — (2.1)

Y A Far] =310 ¥ 250k 4 Y et 0] —
b smd sl

§ A" et 1 =31 o)

f e o $hs Ut L% ip ) a1 (E®In ) ml
‘( LR A A A A 4 (‘w Wels YT ‘ \WIY wir
1 ™
— eg?VH — Vo — [0* (po), 0}y {Wpe*, Fru*} =;r?p-at{w". F*Y o p

Ne=Twe=¢=v =0,r=1;
2) o==Tio=Tp==0, rﬂ—-ﬂx{-—-—i—m _

(o’ —&')2?’ m+ (@ +ug)], r=1

T seTap +p, (1 '\“ lg) @

AP 2 11 e amls dle e = dod . o R IR 2 am detuas i el bl o seuam oo

W wili SUCA LGB ViU Ldiial & s Aj il WD Fu=ia Vi Wit 2TLLATCO
=nUI+q2Uﬂ+~~'s Ui=(gh‘yi)v lﬂ1<1 (2.2)

A=k + e+ .. E=E s+

Here 7 is a small parameter. Substituting (2.2) into (2.1) and equating coefficients of
n* to zero, we obtain a boundary value problem in the eigenvalues

MOUI = Oy Ul = (917 ‘yl) (2.3}
HBYG=0 =Y =¥=0r=1
Q=10 =LY, =T,U; =0, r=1

Seeking the solution of problems (2.3) in the form U, = z,(r) cos nB, we arrive at system
(1.4).

In /&/ it follows from (4.9}~ (4.18) that the boundary value problems {2.3) are self-ad-
joint. Let pebe an eigenvalue of problems (2.3) and let n eigenvector-functions q; = (0 V,)
satisfying the orthonormality conditions

ot
(s i) = S S(@"Qf + Py dr @0 = 5{5

correspond to it.

Here &,;; is the Kronecker delta and (-, > is the scalar product in the Hilbert space £*
of two~dimensional vector functions with square-summable components.
Equating the coefficient of 7° to zero, we cbtain

MUy = (1Q, ¥l + Ay lun*, Py + M 1%, Q) — (2.4)
B, (L, Fo*l, Vs 19, Qu + Ay lwr®, Q] — & (£, wo*])
(R, Vi) = ;31 a (oo B}y U= (s V)

HBQ=0R =Y, =¥=0,r=14
2) Q, = 1Q, = 0¥, = [l + 1y U + do'Q —
Esliugl =0, r =1

The real numbers a; are determined from the conditions for problems (2.4) to be solvable.
By suig integration by parts and taking account of Lemma 4.1 in /6/, we write these condi-
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n n

> 2) % (@, Yo ©3) + Yo (@ 50 Om)} + M T35 — EaT2;=10 (2.5)

k=1 m
le'—'_— )JI 243 {(wl‘v ‘pu mj) + ‘(Fltx Wiy (D_,') + (U)\*, ‘Pj’ mi)}:
;sz:{(mj’ Fﬁ*’ ;} + (‘p‘n wﬂ*s i}}! {§= 1! 25 L n)

2% 1
@, v, wy== S S[u, viurdrdé
L

If the double sum in {2,.5) equals zero for all j, and Ty Tyn — TyTox = 0 for some pair
of subscripts k,m, then A; == E, = 0. Then equating the coefficient of %® to zero, we obtain
an equation for Uj; whose solvability conditions yield a system of algebraic equations for find-
ing the real numbers a;

n non R o . {debo?
2 z z ChgClj Chopn (((0,', ‘pl'my mj) + (mkm’ ’lPi, 0),7') '+" (mkm. ‘piv wt)} +
fs] gam) pe=)
Aol —BsTy;==0 (j=14,2,...,n)
Mn!lm:-‘“ ({(’:‘mv ‘FI} + {wb ‘pm}t {(’}uu (0;])
Yt = (Ot + Olmy Yot + Vim)y Mkl
MoYmm == [{Oms Yl 2100 Onl  Vom = @mm: Puen)

setting «; = Y &= ¥, Ay = My¥ (k8 = 2, 3), we obtain from {2.5) and (2.6), respect-
ively, a system of bifurcation equations of the form (5) in /4/, obtained for the linear
boundary conditions.

Let two eigenvector-functions @, {r, 8) = 2, (r)cos 8 and ¢, {r, 6) = z, (r) cos m@ correspond
to the eigenvalue ps of the problem (2.1), where m >s>1, 2556 m,3s5cm, and s and m are
integers. Then system (2.6) can be written in the form

@, = v, (,vi? + bve? + &) + ¥dy = 0 (2.7
My == v, (Ggva® + Byve? + &) -+ Edy = 0

The coefficients of the system (2.7) are calculated from the formulas /5/
1
ar =, { {0,5r (11By + haBa) + cugs — Prgad dr, (2.8
o

1
by=es (0,5 (HLDy + HaDy) + 04Gy — a6} dr

o

1
bl-——-el"‘T, agme{*T, ej=2gﬁjr2 dr
(1]
1

T oo {18 Buts — o) ar)
[

I'== \{Ey(Iy — Iy} + Eg(Is — I} +Fi{ly 4 Ty + Fy(Is + L)} rdr

B Gy

iy
dy= (amey § $toasm [~ (y0e) — Bue) +
20
i jg (l)g"? 3 -+ uo"ﬁ 5}} dr d8
=42, m==s, my=m

We introduce the notation
Ay = by — by, Ay = a; — @y, Ay = tyb, — a3b,

Theorem 2.1. Let the shell have the initial deflection Ef,(r)cos m0 and let p, be a
double eigenvalue of problem (1.4). Then problems (1.1) and (1.2) have three limit points
P (i =1,2, 3) in the left semicircle of pyin the plane d, == 0 if the inequalities by >0,
bao> 0, AgAy™t > 0 are satisfied simultapeously, two limit points if any two of these inegualit-
ies are satisfied, and one limit point if one of these inequalities is satisfied. Here the
ps' are determined from the equations

(Po— Pyl =373 | dot [ (3be)r, b, >0 (2.9)
187 (o~ B = det (by — bo)2], £y >0
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(Po — PO)H =33 | a:A7" dot | (305477)Y2
AsAT >0, Bt

We have for the corresponding solutions of system (2.7) with dy =0, dy5% 0 and [, =
Po— p >0

vgl) =0, ‘vg =4[l le" Vs, (2.10)
(2)___0 Vgﬁ) =i—[Lsz_l]'/'

v§” ==[(Ls — by? a;l]'/', véa) =y=-4{Y LaA:A;l]ll’y

WO @
1 )

W= (La—byda'>0

The upper (lower sign in (2,10} is taken in cases when the appropriate expression under
the modulus symbol in (2.9) is positive (negative). This theorem supplements the similar
Theorems 7.2 and 7.3 in /6/.

The boundary value problems to determine the functions in (2.7) are written only for
boundary conditions 2) in (1.2) since they are known /5,6/ in the case of linear boundary
conditions. The vector-~functions K = (E,, E,) and F = (F,, F,) are found from the problems

WE = (h—1), §E=—5(s—1) e
]'=m__3’ E,:—.—..—O(r])

E1=P1E1= R’(j, E3)= R(], E) +%71’Y5'=0, ,r==1

WFP=tdi+ 1), =g+ 1y

t=m-+s, Fi=0("
F1=I‘1F;=R,(£ Fg)‘“‘gft,f?)-f— ‘;’1'?2 ==0 T‘—'—‘-‘»i (l=1,2)

Zy (1) = {71, &1)s T (1) = (72, 82)
For m — s =1 the first system in (2.11) is converted to the form

go? [zo” -+ 3 (zgrY'] — (up + 1) Yor™* — vgxr™ = Vy™® (2.12)
go? [yo” + 3 (gor™'1 -+ (up + 1) zor™t =

—Vor®, | zogr™, Yor™ lrme <
wy oy + (2 + v+ keo™) Tl + pazy = Yo'+ (2 — V) yy =

0, r=1, gy = (Eg®, 4 = (Eorty

The vector functions ¢, = (~B,,a,) and B = (B,, By) are found from the boundary value
problems
2?48, = 2By — (ue + 1)y + 8 (1), 8PAe2; = uhy + (2.13)
By + & (), Ly (B + vBa + keo'By) + pay = 1’ — V@il =0

2, {0) = B (0) = 0

BB=h(r), WB=hs(r), Bi=0(" (2.14)
2rhy = [V1, 01, 8] -+ [O1, Y1y 8} + 22 [Ba}[va]r™t,  2rhg==[y1, 71, s+
Svdlndrt v, 6, ml=y"(§ —m¥r™Y), [y]=y —qyr

By=T1By= Ry (2, B)=R(25, B) + 4 /=0, r=1

See /5/ for the remaining notation.

3. Application of the method of alignment. The coefficients and right sides
of (1.3}, (1.4), (2.11)—{2.14) have singularities as r —0, and consequently difficulties
associated with the approximation of the equations in the neighbourhood of the point r = 0
cccur on integrating the appropriate boundary conditions. By using the change of variables,
new modes of writing these boundary value problems can be obtained which are convenient for
the effective application of the method of aligrmment /8—10,15/ (*).

Taking account of the results of Sect.9 in /10/, we assume in {1.4)

*) The detailed content of Sect.3, as well as an investigation of the buckling of imperfect
arbitrary shallow shells by the perturbation method. See also, Srubshchik L.S., Application
of the method of alignment to analyze non-axisymmetric buckling and post-critical behaviour
of elastic spherical shells. Rostov-on-Don, 1982, 48 p. Deposited in VINITI, 11, 11, No.
5568~82.
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{n: fr Latns Lnfa} = 77 {00°, $n’, Zn, ¢n} (3.1

Then, to determine p, and its eigenvector-functions z,” = (@,°, P,) we find

eoanzn {1+ uor.l) Gn — VT 2y — (uor—l)'Tn‘l’no - (3.2)

(vgr™)" Tnw,® = 0

€' Kngn + (1 + ugr™) 2z, + (Uer™) Town® = 0, z, = Kp0,°

gn = Kp¥,°, Kpz = 2" + (2n — 1) (zr™)’

Tpz =2 —(RP—n+ 1Dzt (n>2)

| (“’nov ‘Pn°, 2y gﬂ) rt jremp << 00

1) 0n° =g =9," =19," =0, r=1

Do’ =g=¢g—1+¥T% =0

&g +(n—=2) g +(1 + V) — )" + (n— DYl +
(1 +ugey” =0,r=1

O = By [2 + (v — 1 + keo™) 0.”] + ppw,”

We make the change of variables

YO = (yl'l Yss Yss yd} = {"'uoy —r1 ("%)’7 (3.3)
Vo, 7 {rvg)' Yy Yy = {yy, Yoo - - -, o) =
{0y’ 00, 20, 2/, 9, Y™y gno '}

We write problem (1.3) in the form of a system with boundary conditions

Yo= {y,--%—, &’ (“ys +y—?‘—'*2p7')s

(3.4)
¥s -3 _____3__ 2 <1
B & (91 =¥t ST
Yo = {t, 0, 8,0}, 0<r<8, (8= 107
Y1 (0) = y; (0) = 0, y, (0) = 25, y, (0) = 2t
HDplyy+ =1+ kee™)yd + paty =y, =0, 7=1
wmlp+0—~1t+k)ypl F i =y = +vy, =0, r=1
To determine p, and z,°we have the following system from (3.2)
Yy = (s, ¥o -+ Sabis, Yo, Sahr + 80™? (a¥ny + Yopor™t — (3.5)

briGuys + er Gals)s ¥10r Yu + Su¥er ¥ia
Sayn + &7 Gy — apr)), S <r
Yy = {5,,0,8,0,8,0,5,0, 0<r8§
a=1—yrt b=ry ~2, ¢c=ry, — 2y,
Yse2; (0) == 0, Yarsj (0)"—'33‘ i=14,2,34
1 g = palyr + (v — 1 + key™) yel +
Bayfe == Yy = yyo = 0, r = 1
ys=mlyp+v—1+ keg™t) yol + palbe = ¥ —
(1 +v)Guyy =0
e’ e + (0 —2)yy + (1 + v) (1 — n®) (y0 +
=Dy + 1 —y)ye =0, r =1
Spyi = (2n — 1) (g1 — ryia) 72,
Grli =iy — (P2 —n - ) yyr?

The unknown parameters s, I,, §; are calculated by the method of alignment /8—10, 15/ by
using the boundary conditions for r= 1. Analogously, the substitutions z, = g0, 2, =
izt B = r¥#B°, F = r'"'F° are made to transform problem (2.11)—(2.14). The difference
between the numerical results by the method of alignment presented below and the results from
the programs in /4—6/ for a number N = 100 of mesh nodes does not exceed 0.03% for the
calculation of p, and 1% for the calculation of the coefficients of gystem (2.7).

4. A spherical shell for a closed framed edge. Let g, be the classical value
of the critical pressure for a complete sphere p, = puge™ A = 213 (1 — )"« (H/h)*», where py
is the critical pressure of non-axisymmetric buckling of an ideal spherical shell. As in



546

/1—6/, we will set v == 0.33.

Using the formulas of Sect.3, we calculate for problems (1.1), 2) in (1.2) with A = 6.6,
#; =0, pg = 1 that two eigenvector-functions @, and @, with the harmonics $ =2, m = 3 corres-
pond to the least eigenvalue p,= 0.774 . To determine the critical loads p, (&d,, &d,) we der-
ive the system of egquations

3V jov, =0, detﬂ%—_u=0 (k,j=1,2) (4.1)
2

V = 194.4v* + 203,9 v4* -+ 789.8 v v, -+
(p —= Po) (415v,® 4 666 v,?) + & (dyv, + dyvy)

Hence, following /5,6/, we have from (2.9) for critical pressures for d, =0 and dys= 0 :

P =py— M (@Y (1=1,2,3,4); n, =159 n, =16 1ny=n =864 (4.2)
For the critical pressures we have for d,# 0,d, =0
P =po— %, (d&) (i =05,6,7,8); xg=1.85 % =3.02; % =15 =125 4.3)

The arrangement of the cirtical load surfaces p, (§d;, &d;) is analogous to the case of a
spherical shell with A =17 (see /5,6/), where the greatest reduction in the critical value
equals 0.41 for R = |t |(d® +d )2 = 0.01 and a =1.37, i.e., M; (1.37; 0.41). Therefore, for
R = 0,01 the critical pressure of an imperfect shell is 53% less than p,, and 11.1% less
when taking account of buckling by one mode. The strong reduction in the bifurcation value
of po is characterized also by the relationship (py® — po}(pst!) —po) "t 5,4, where p,(» and p,3
are, respectively, the critical loads taking one and two eigen modes into account.

For A =9 two eigenvector-functions @, and @ with s = 4, m = 5 correspond to the value
po = 0.776 . The potential function has the form

V = 322.5v;* 4 384.6v,* + 1447v,>v + (p — po) (765.3v,® + 1018v,%) -+ & (dyv, + dyvy) (4.4)

Here, (4.2) and (4.3) hold for m; = 1.72, 5, = L.713; 0y = 9y = 3,7, u; = 1.79, ug = 2,05, u; =
s = 1.76. The arrangement of the critical load surfaces is analogous to the case A = 17,
where C,(0.62; 0.02), M, (1.18; 0.19). The critical pressure of the imperfect shell is 24% less
than ps for R = 0.01, and 10.7% less than taking account of buckling in one mode. For A =9
we note the experiment in /16/.

5. A sperhical shell with a free clamped edge. In this case calculations of
the eigenvalues of the problem (1,4) for n =1 together with the results in /6,9/ for n > 2
ghow that for v = 0.3 non-axisymmetric buckling of an ideal spherical shell is possible for
A > 6.3. The graph of the coefficients b {(A) = — a,p,”!, introduced in /3/ to estimate the shell
response to imperfections for the least bifurcation value p,, obtained by the application of
the alignment and matrix factorization methods, is shown in the figure for the appropriate
boundary value problem (1.1), and 1) in (1.2) for p, =1, p, = 0. At the points A= 6.7,
8.045, 9.52, 11.1, 12.75, 14.5, 16.3, 18, 20, 22 the eigenvalues p, belong to the double spect-
rum and equal respectively, 0.345, 0.348,0.343, 0.335, 0.327, 0.318, 0.310, 0.302, 0.295,0.288.
Eigenfunctions with the numbers of the harmonics i and i - 1 correspond to the value of p, at
the i-th place. Moreover, p, (6.3) =0.331. A graph agreeing with Fig.8 in /3/ is obtained for
the coefficient b when checking the numerical programs of this paper in the case of rigid edge
clamping.

In the case of buckling in two modes ¢

8 and @, with the harmonics s=2,m =3, for
A = 8.045, v = 0.33 we obtain the following
-0.2 a N potential function for the least bifurcation
/2 /J C ny value p, = 0.348
~——a
~0.15 <~~~ V = 57.4v,* -+ 50.6v,* + 244.6v,%,* +
' T (p — Po) (1323v,% + 1700v,%) + & (dyvy + dgva)

-0t 10 1% 18 A

Here 1, = n, = 0.737, 1y = 1n, = 1.853; x%, = 0.818, xs = 0,991, %, =%, = 0.652, M (1.18, 0.09),
C, (0.62, 0.006). The critical pressure of an imperfect shell whenR = 0,0{is 26.5% less thanp, for an
imperfect shell, and 9.8% less when taking account of buckling in just one mode.

Note that the graph in the figure does not agree with an analogous graph in Fig.3 in /17/,
where the calculations were performed by the alignment method by means of (13}, (14}, (29)
and (30) from /2/, where the change of variables
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{zr 91 0} = l‘ (’v ﬁ! w)v {wln- flnt P- x} =" {an, LF,“ l‘““, m “‘)1 ," =A
is made in going over to the Cauchy problem. Such a substitution will obviously result in
unsatisfactory results since, according to /17/, when integrating in the interval [0,1] the
solutions of the above-mentioned boundary value problems are replaced by a segment of the Taylor ser-
ies for re[0,4r], where Arvaries between the limits 0.11-0.27. For instance, it is asserted in
/17/ on the basis of numerical computations that "for fixed n, b is a negative continuous
function of A".However, in the normalization of the eigenfunctions used in /2—6/, for n=2
the correct computations give b (8.76) = —8.32 and b (8.77) = 92.4. Hence, at the very least a
variability in the sign of the coefficient b results.

The sign change for the coefficient b in the interval 8.76 < A <8.77 indicates the pass-
age of the mode with harmonic r=2 from unstable into stable. A value A, exists in this
interval such that p,— 0.8557, Ly — 2852, b= — Lyl lpy = F 00 a8 A—A,F0 and the amplitude w
of the appropriate non-axisymmetric mode satisfying the bifurcation equation Lygv® 4+ Ly (p —
P v+ ELy =0 tends to zero, i.e., for A=A, the solution "sits" on the axis v =0. This
latter remark is due to V.A, Trenogin.

6. A spherical shell with & fixed hinge-supported edge. Numerical computations
of problems (1.1), 2) in (1.2) for p, =1, pu, =k =0, v = 0,33 show that the non-axisymmetric
buckling of an ideal spherical shell can hold for A > 3.4. At the point A =4.36,5.655, 6.94,
8.02, 9.35, 10.6, 11.95 the eigenvalues p,are repeated and equal to, respectively, 0.652,
0.647, 0.655, 0.664, 0.669, 0.674, 0.679. The eigenfunctions with numbers i and i+ 1 of
the harmonics correspond to the value of p, at the i-th place. 1In the case of buckling in
two modes @, and @y with the harmonics s=2,m =3, for A = 5655;v = 0.33 and p, = 0.647
we obtain the potential function

V = 234.Tv;* + 250.9vg¢ -+ 988.9v,%,® + (p — po) (622.7v,% + 913.9v,%) + E (dyv, -+ dyvs)
Here
Ny = 1.55; m, = 1.35; My = 0y = 5.2 x5 = 1.72; % = 2.28; %, = x5 = 1.33; M, (1,18; 0.25), C, (0.51; 0.03).

The critical pressure of an imperfect shell is 39.1% less than p, for R = 0,01, and
12.3% less when taking account of buckling in one mode,

7. Asymptotic analysis as ¢-—0. Let & —0 (A~ o). Then in the case of the bound-
ary conditions 2) in (1.2), for the axisymmetric solution =z*(r) as e, — 0 the following
asymptotic representations hold /13,14/

u~egg, v~—2pr-+eh, p<li (7.1)
g=s8(nbz,+y,), h=3(2ab+ pb~lsy)z, + 5 (p — 2a8) g,
2et=1—p, W=1+p, t=(1—r)¢?
2, = ¢ sin br, Vo= ¢ cos bt
8 == 2p (v — 1) (k 4 2a)?
s =k<a, A=8;l
Following /1,3,11/ and setting r=1 —eg¢, 0= n%;, £rom (1,4) as e,— 0 we obtain

lf.,‘)zo =" — 260" + 620 4 6P + 2p0" — 2p60 ~ 6h'® — 6P — P" =0 (7.2)

1Bz = — V" + 269" — sHh— 0’0 — 0" + g0 =0, To=(0, P)

2g(A) =g (A) =0, [0 =p; (0" — k') + Py’ = §* + oV = §" —

SR+ N+ p0y =0, (Y =2()
to determine the asymptotic value of the upper critical pressure of non-axi symmetric buckling
p% the amplitudes of its eigenvector functions (v (1), 8(®) and o9,

The surfaces of the asymptotic values of the critical loads are determined from the

7ystem of bifurcation equations (2.7), where the coefficients are determined by the formulas
11/

A
ay = by = ap = 5l S (;,ﬂ—z,a—-‘fy,p; +%y,p,)dt. g == by = bg == (7.3)
0
A

A
{4og)™ {4 S (as:~ Pa)dt —c S [ (V'8 + ¥8') + a¥Y' 4 1 (¥°8 + 8%y —
1] o

A
270 — fa (¥ — 1v7)] d:}, =2(v—1)a(0)+ _;..S or +vi—dgh) dt, p=p% om o
0
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A

4, =d;° = — 6 (ko) 0y, \ {20+ W)y +gd)tat, gy =],
| A
${1,8) =0

mylet — o%, L (r, 8) = e [La (7) cos my B 4 Ly (r) cos m,8;

i=1,2

For a closed framed edge { ({,8)=g,, =0 and the coefficients d{“and D, from /11/ are zero.

n
In this case we have for {= ) {(r)cosm®
i1

A
4= @ayony (P + M)V 40 8dt gy m T

0 raxl

The formula for D; in /1l/ is therefore obtained by replacing 2p by —k.
Here a{t),p() and p= (p,py) are determined from the boundary value problems

B42pp+om=y, o' —P=s, ‘&"—%(?5)'» n=—-%w', {pa (B~ BB)+ (7.4
pfmal =0, a(d)mP(A)=0

Wo=v, Uomyn nm— ZWB+W —290), n=—g (W77

o= (P kpy) + mpy = Py Aove= 0" — 40 2+ V)Y + il Lo =00 P{A)=p"(A) =0

The operators D, i are obtained, respectively, from expressions for the operators
@, ® in (7.2) by replacing ¢ By 40 . Note that in this notation, instead of B, 1 in
/11/, one should read l‘"}. ls} respectively. For the functions fm=(f, j;} and ene& also concen~
trated in the boundary layer, we have

Wf = (ko) K = Lista) (7.5)
s 20 (VO + 8"Y), 8= 4obY, s=—2077, &= 207"
o=@ (fi* — kR') + pafy = /" +dovfy =
17— 40 (24 V) W+ By g =0 F{A)=/"(A)=0
® gyt 2P = S (Y)W, + % = — oWy
Ky == — e'l. n,s—-—e'z, # (N} =% (A) =0
[ () — Ty} o+ By = g Jymg = 0

Formulas (7.1)=(7.5) are derived from (2.11)—(2.14) by the boundary layer method as
g, — 0 , and their extension to strictly convex shells under axisymmetric loading is performed

by using the results obtained in /11,14/.

The boundary value problems (7.2), (7.4), (7.5) were solved as in /11/, where numerical
results are presented for pu, =0, p,=1. For a fixed hinge - supported edge (M =1, uy =k =0)
we have po — p®* = 0,710, m?e8 — 0% = 0,845 (1 = 1,2), a4 = 0.7284, b, = 1.4568. For the critical pressures we
have (4.2) and (4.3) with p,, d,,d, replaced by p% d;° d° M =uy = 1,700, ny=11g = 1,799, 1y = %; == 2.452.
The values :=1,5 are obtained when taking account of buckling in just one mode. The critical
load surfaces have the same form as in /5/, where M, (5n/18,0.132), C; (#/4,0,02) 4, = B;.
Assuming that p® is a hextuple eigenvalue, we arrive at formula (11) in /11/, where %=1,
V.8 = g Vs = B,048; v = 9,541; p,* = 12,943; 9% == 16,362; 3, =1, These formulas explain the high sensitiv-
ity of very thin elastic shells to small initial deviations of their surfaces from ideal geo-~
metric shape.
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QUASI-TRANSVERSE SHOCK WAVES IN AN ELASTIC MEDIUM IN THE CASE OF
SPECIAL TYPES OF INITIAL STRAIN

E.I. SVESHNIKOVA

Weak shock waves in isotropic elastic medium under an arbitrarily small
initial strain were considered in /1,2/. The present paper deals with
shock waves with higher order of symmetry, when there are special types
of initial strain; all the results are obtained in explicit form.

1. Formulation of the problem. The investigations are carried out using the same

formulation and the same degree of accuracy as in /1—3/. The general form of the elastic
potential of the isotropic medium is given by the expression

D©=pol (&, 8) ==2/a M1? - uI; + BIoSs + pIs + 81, +
8152 + pol's (S — So) + const.
=gy, lie=egey; Li=epue
1 [ ow o i dw, dw,
%'—“-'T(?e; ‘ '5&"'*"&("6_5,‘)

Here U is the internal energy, p, is the density in the stress-free state, T is the

temperature, S is the entropy, e; are the finite strain tensor components, w; are the dis-
placement tensor components, §, are Lagrangian coordinates, and the coordinate system in the
stress~free state is rectangular Cartesian. The axes of this system are chosen so that the
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